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The output of a linear filter driven by a randomly polarized square wave, when viewed backward in time, is
shown to exhibit determinism at all times when embedded in a three-dimensional state space. Combined with
previous results establishing exponential divergence equivalent to a positive Lyapunov exponent, this result
rigorously shows that such reverse-time synthesized waveforms appear equally to have been produced by a
deterministic chaotic system.
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Recently, a surprising new mechanism for generating cha-
otic waveforms was reported �1,2�. Rather than arising from
the evolution of nonlinear dynamical systems, it was shown
that chaotic waveforms can result from the convolution of a
specially constructed basis pulse with an infinite train of ran-
domly polarized delta functions. In this context there is no
chaotic attractor, yet the output waveform exhibits all the
salient properties of a waveform generated by a chaotic dy-
namical system, including a positive Lyapunov exponent and
determinism when embedded in a suitable state space �3�.
Importantly, it was found that this mechanism can occur in
very simple physical systems �4�. In particular, it was shown
that a linear, second-order filter excited by a randomly polar-
ized square wave can generate a waveform that, when
viewed backward in time, is chaotic. This output waveform
was called reverse-time chaos. Furthermore it was found that
the same filter can produce a number of different chaotic
topologies, including a folded band structure �5� and multi-
lobed sets �6�. The discovery that chaos can arise outside the
context of deterministic nonlinear systems raises the intrigu-
ing possibility that chaos may play an unexpected role in
physical theories not based on nonlinear dynamic models.

In the initial description of reverse-time chaos, it was
shown that the waveform exhibits a shift map when sampled
at the drive transitions. Although this demonstrated a positive
Lyapunov exponent and determinism in the waveform
samples, this result did not address what happened between
sample times. In particular, it remained unclear whether de-
terminism is exhibited at all times in the continuous-time
waveform. In this Brief Report we present a more rigorous
proof of chaos by explicitly showing determinism at all times
when the waveform is embedded in R3.

A previous paper considered the response of the driven
linear filter

ẍ + 2�ẋ + ��2 + �2�x = s�t� , �1�

where �=ln 2, �=2k�, and s�t� is a randomly polarized
square wave �4�. Specifically, the filter input is

s�t� = sn, n � t � n + 1, �2�

where the polarity of each unit-length square pulse is repre-
sented by the random sequence �sn�, with each symbol
sn� �−1, +1�. The system �1�, �2� yields the explicit solution

x�t� =

s�t� + 2�t�−t�cos �t +
�

�
sin �t��− s�t� + 	

i=1

�

s�t�−i2
−i�

�2 + �2 ,

�3�

where �t� represents the largest integer less than or equal to t.
In the previous work, the frequency was allowed to take
values from a discrete spectrum with k� �1,2 , . . . �, but here
we primarily consider just the fundamental k=1. An impor-
tant conclusion of the previous work is that the waveform �3�
exhibits reverse-time chaos; that is, when viewed backward
in time, the waveform appears equally to have been gener-
ated by a chaotic dynamical system. To support this conclu-
sion, it was shown that the reverse-time waveform sampled
at integer times t=n satisfies a chaotic shift map, thereby
demonstrating determinism and a positive Lyapunov expo-
nent ��=ln 2� in the waveform samples.

The previous analysis left uncertain whether the reverse-
time waveform is deterministic at times other than sample
times. In this report, we show that the waveform exhibits
determinism at all times when embedded in R3. Specifically,
this result means that, for the waveform viewed in reverse
time, specifying an initial condition—namely, the state x and
its first two derivatives ẋ and ẍ—uniquely determines the
future trajectory of the waveform. Equivalently, when view-
ing the filter response �3� in forward time, the state and two
derivatives specified at a final time t0 uniquely describe the
complete history of the filter state.

To begin, we suppose that x�t0�, ẋ�t0�, and ẍ�t0� are given
at an unspecified time t0 as shown in Fig. 1. Without loss of
generality, we assume that 0� t0�1; in effect, we identify t0
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FIG. 1. Initial conditions specified at t= t0 for a reverse-time
chaotic waveform x�t�.
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as the unknown phase of the initial conditions relative to the
drive sequence in Eq. �2�. To prove determinism in the
reverse-time waveform, it is sufficient to show that the given
conditions uniquely specify the state x�t� via Eq. �3� for all
times t� t0.

Evaluating equation �1� at t= t0, we find

s0 = ẍ�t0� + 2�ẋ�t0� + ��2 + �2�x�t0� �4�

implying the current symbol s0 is uniquely and immediately
determined by the given conditions. A derivative of the so-
lution �3� yields

ẋ�t� =
− 2�t�−t

�
�− s�t� + 	

i=1

�

s�t�−i2
−i�sin �t �5�

which is valid for all t. Although there is an apparent discon-
tinuity in Eq. �3� at t=0, we know by construction that the
solution �3� and its first derivative �5� are continuous every-
where �4�. Evaluating Eqs. �3� and �5� at t= t0 yields

��2 + �2�x�t0� = s0 + 2−t0�r − s0��cos �t0 +
�

�
sin �t0� ,

ẋ�t0� = −
2−t0

�
�r − s0�sin �t0, �6�

where we used �t0�=0. In Eq. �6�, we have defined

r = 	
i=1

�

s−i2
−i. �7�

Since each symbol s−i= �1 for i=1, . . . ,�, the series �7� is
necessarily bounded as −1�r�1. Moreover, any value of r
in this range maps to a unique sequence of symbols s−i via
the binary representation �7�. As a result, determining r im-
plies all prior symbols are also determined.

Proving determinism is now reduced to showing that t0
and r are uniquely determined by the given conditions. To
this end, we define the intermediate quantities

A = 2−t0�r − s0�cos �t0,

B = 2−t0�r − s0�sin �t0. �8�

Using Eq. �6�, we see that

A = ��2 + �2�x�t0� + �ẋ�t0� − s0,

B = − �ẋ�t0� , �9�

where everything on the right-hand side is known. Thus, the
intermediate quantities A and B are uniquely determined by
the given conditions. From Eq. �8�, we find

r − s0 = � 2t0
A2 + B2. �10�

The ambiguity in the sign in Eq. �10� is resolved by recalling
that −1�r�1 and s0= �1. If s0= +1, then −2�r−s0�0.
Similarly, if s0=−1, then 0�r−s0�2. Thus, the sign of
r−s0 is determined entirely by s0,

sgn�r − s0� = − s0 �11�

and

r = s0�1 − 2t0
A2 + B2� . �12�

Thus, if t0 is determined then r is fixed as well.
To determine t0, we use Eqs. �8� and �12� to get

cos��t0� =
− s0A


A2 + B2
,

sin��t0� =
− s0B


A2 + B2
, �13�

where by assumption we have 0� t0�1. Formally, we may
write

t0 =
1

�
tan−1�B

A
� �14�

but the solution is ambiguous with period 1
2 for k=1. This

phase ambiguity is resolved by considering the sign of the
cosine and sine in Eq. �13�. Here it is sufficient to note that
the two expressions in Eq. �13� admit a unique solution in
the range 0� t0�1. Thus t0 is uniquely determined, and the
prior symbols are likewise determined via Eqs. �7� and �12�.

Thus we have shown that the given conditions x�t0�, ẋ�t0�,
and ẍ�t0� uniquely specify the unknown phase t0, the current
symbol s0, as well as all prior symbols s−1, s−2 , . . ., which is
everything necessary to evaluate Eq. �3� for any t� t0. Con-
sequently, it follows that the waveform �3� exhibits reverse-
time determinism at all times when embedded in R3. Com-
bined with previous results establishing exponential
divergence and a positive Lyapunov exponent �4�, this result
rigorously shows that the linearly synthesized waveform �3�,
when viewed backward in time, is chaotic.

We note that R3 is a sufficient embedding dimension for
the chaotic waveform. However, the present analysis does
not establish a minimum embedding dimension for the syn-
thesized waveform, and it may be that a three-dimensional
embedding is not strictly necessary. We also note that the
ambiguity in Eq. �14� is resolved only for k=1, and this
proof of determinism is incomplete for k	1. In such cases, a
different embedding or possibly a larger embedding dimen-
sion may be required to prove determinism at all times.

It is significant to recognize that the synthesized wave-
form �3� exhibits determinism in only one direction, namely,
backward in time. In fact, the reverse-time chaotic waveform
is not invertible; in the preceding analysis, the sequence of
future symbols s1,s2 , . . . , is left unspecified by the given con-
ditions. In this respect the reverse-time chaos in Eq. �3� dif-
fers qualitatively from chaos generated by continuous low-
dimensional flows such as the Lorenz or Rössler systems,
which exhibit determinism in both the past and future �7�.
Instead, the synthesized waveform exhibits the characteris-
tics of a semiflow, which is typical in delay-dynamical sys-
tems and discontinuous vector fields �8,9�. Here, one-sided
determinism is a necessary consequence of causality in
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the physically realizable filter of Eq. �1�. However, it has
been shown elsewhere that chaotic waveforms can also be
synthesized using an acausal basis function with exponential
decay in both future and past directions �1�. A chaotic wave-

form synthesized with a two-sided pulse can be invertible,
and a rigorous proof of two-sided determinism in a class of
these synthesized chaotic waveforms is the subject of future
work �10�.
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